Quantitative evaluation of noise reduction strategies in dual-energy imaging.
نویسندگان
چکیده
In this paper we describe a quantitative evaluation of the performance of three dual-energy noise reduction algorithms: Kalender's correlated noise reduction (KCNR), noise clipping (NOC), and edge-predictive adaptive smoothing (EPAS). These algorithms were compared to a simple smoothing filter approach, using the variance and noise power spectrum measurements of the residual noise in dual-energy images acquired with an a-Si TFT flat-panel x-ray detector. An estimate of the true noise was made through a new method with subpixel accuracy by subtracting an individual image from an ensemble average image. The results indicate that in the lung regions of the tissue image, all three algorithms reduced the noise by similar percentages at high spatial frequencies (KCNR=88%, NOC=88%, EPAS=84%, NOC/KCNR=88%) and somewhat less at low spatial frequencies (KCNR=45%, NOC=54%, EPAS=52%, NOC/KCNR=55%). At low frequencies, the presence of edge artifacts from KCNR made the performance worse, thus NOC or NOC combined with KCNR performed best. At high frequencies, KCNR performed best in the bone image, yet NOC performed best in the tissue image. Noise reduction strategies in dual-energy imaging can be effective and should focus on blending various algorithms depending on anatomical locations.
منابع مشابه
Shearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملValue-Based Noise Reduction for Low-Dose Dual-Energy Computed Tomography
We introduce a value-based noise reduction method for Dual-Energy CT applications. It is based on joint intensity statistics estimated from high- and low-energy CT scans of the identical anatomy in order to reduce the noise level in both scans. For a given pair of measurement values, a local gradient ascension algorithm in the probability space is used to provide a noise reduced estimate. As a ...
متن کاملEvaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin
Objective(s): Use of a positron emission tomography (PET)/single-photonemission computed tomography (SPECT) system facilitates the simultaneousacquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) andtechnetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511keV Compton-scattered photons are detected in the 99mTc energy window.Therefore, in this study, we aimed to ...
متن کاملThe Effect of FEW Scatter Correction Method in In-111 Imaging
Introduction: In nuclear medicine imaging, detection of the scattered photons along with the primary photons is one of the major problems that can lead to a decrease in ddiagnostic accuracy. Therefore, use of a suitable scatter correction method can help to improve of the image quality and increase of diagnostic accuracy. The aim of this study is evaluation of five energy wind...
متن کاملEvaluation of the Effect of Connection between RC Shear Wall and Steel Moment Frame on Seismic Performance and Reduction Factor in Dual Systems
Dual systems of steel moment frame and reinforced concrete shear wall have combined the advantages of steel frames and reinforced concrete shear wall. These walls have increased the lateral stiffness of steel frames and have reduced seismic demands on steel frames thus providing opportunities to use such system. In this research intermediate dual system of steel moment frame was chosen with int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2003